skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lakhchaura, Kiran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Voit et al. black hole feedback valve model predicts relationships between stellar velocity dispersion and atmospheric structure among massive early-type galaxies. In this work, we test that model using the Chandra archival sample of 49 early-type galaxies from Lakhchaura et al. We consider relationships between stellar velocity dispersion and entropy profile slope, multiphase gas extent, and the ratio of cooling time to freefall time. We also define subsamples based on data quality and entropy profile properties that clarify those relationships and enable more specific tests of the model predictions. We find that the atmospheric properties of early-type galaxies generally align with the predictions of the Voit et al. model, in that galaxies with a greater stellar velocity dispersion tend to have radial profiles of pressure, gas density, and entropy with steeper slopes and less extended multiphase gas. Quantitative agreement with the model predictions improves when the sample is restricted to have low central entropy and a stellar velocity dispersion of between 220 and 300 km s −1 . 
    more » « less
  2. null (Ed.)